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Abstract

Increasing concerns and regulations about data privacy and
sparsity necessitate the study of privacy-preserving, decen-
tralized learning methods for natural language processing
(NLP) tasks. Federated learning (FL) provides promising ap-
proaches for a large number of clients (e.g., personal devices
or organizations) to collaboratively learn a shared global
model to benefit all clients while allowing users to keep their
data locally. Despite interest in studying FL. methods for NLP
tasks, a systematic comparison and analysis is lacking in the
literature. Herein, we present the FedNLP, a benchmarking
framework for evaluating federated learning methods on four
different task formulations: text classification, sequence tag-
ging, question answering, and seq2seq. We propose a uni-
versal interface between Transformer-based language mod-
els (e.g., BERT, BART) and FL methods (e.g., FedAvg, Fe-
dOPT, etc.) under various non-IID partitioning strategies. Our
extensive experiments with FedNLP provide empirical com-
parisons between FL methods and helps us better understand
the inherent challenges of this direction. The comprehen-
sive analysis points to intriguing and exciting future research
aimed at developing FL methods for NLP tasks. '

1 Introduction

Fine-tuning large pre-trained language models (LMs) such
as BERT (Devlin et al. 2019) often leads to state-of-the-art
performance in many realistic NLP applications (e.g., text
classification, named entity recognition, question answering,
summarization, etc.), when large-scale, centralized training
datasets are available. However, due to the increasing con-
cerns and regulations about data privacy (e.g., GPDR (Reg-
ulation 2016)) emerging data from realistic users have been
much more fragmented and distributed, forming decentral-
ized private datasets of multiple “data silos” (a data silo
can be viewed as an individual dataset) — across different
clients (e.g., organizations or personal devices).

To respect the privacy of the users and abide by these reg-
ulations, we must assume that users’ data in a silo are not al-
lowed to transfer to a centralized server or other clients. For
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Figure 1: The FedNLP benchmarking framework.

example, a client cannot share its private user data (e.g., doc-
uments, conversations, questions asked on the website/app)
with other clients. This is a common concern for organiza-
tions such as hospitals, financial institutions or legal firms,
as well as personal computing devices such as smartphones,
virtual assistants (e.g., Amazon Alexa, Google Assistant,
etc.), or a personal computer. However, from a machine
learning perspective, models trained on a centralized dataset
that combine the data from all organizations or devices usu-
ally result in better performance in the NLP domain. There-
fore, it is of vital importance to study NLP problems in such
a realistic yet more challenging scenario —i.e., training data
are distributed across different clients and cannot be shared
for privacy concerns.

The nascent field of federated learning (et al 2019; Li
et al. 2020b) (FL) aims to enable many individual clients to
train their models jointly while keeping their local data de-
centralized and completely private from other users or a cen-
tralized server. A common training schema of FL methods
is that each client sends its model parameters to the server,
which updates and sends back the global model to all clients
in each round. Since the raw data of one client has never



been exposed to others, FL is promising as an effective way
to address the above challenges, particularly in the NLP do-
main, where many user-generated text data contain sensitive
and/or personal information.

Despite the growing progress in the FL. domain, research
into and application for NLP has been rather limited. There
are indeed a number of recent works on using FL meth-
ods for processing medical information extraction tasks (Sui
et al. 2020). However, such prior work usually has its own
experimental setup and specific task, making it difficult to
fairly compare these FL. methods and analyze their perfor-
mance in other NLP tasks. We argue that future research in
this promising direction (FL for NLP) would highly bene-
fit from a universal benchmarking platform for systemati-
cally comparing different FL. methods for NLP. To the best
of our knowledge, such a benchmarking platform is still ab-
sent from the literature.

Therefore, our goal in this paper is to provide compre-
hensive comparisons between popular FL methods (e.g., Fe-
dAvg (McMahan et al. 2017a), FedOPT (Reddi et al. 2020),
FedProx (Li et al. 2020c)) for four mainstream formulations
of NLP tasks: text classification, sequence tagging, ques-
tion answering, and seq2seq generation. Although there are
few available realistic FL datasets for NLP due to privacy
concerns, we manage to use existing NLP datasets to create
various non-IID data partitions over clients. These non-IID
partitions simulate various kinds of distribution shifts (e.g.,
label, features, quantities, etc.) over the clients, which of-
ten happen in real-world NLP applications. As for the base
NLP models, we use the Transformer architecture (Vaswani
et al. 2017) as the backbone and support a wide range of
pre-trained LMs such as DistilBERT (Sanh et al. 2019),
BERT (Devlin et al. 2019), BART (Lewis et al. 2020), etc. In
order to conduct extensive experiments, we need to support
the experiments with multiple options on dimensions such
as (1) task formulations, (2) NLP models, (3) FL algorithms,
and (4) non-IID partitions. Therefore, we propose FedNLP,
a modular framework with universal interfaces among the
above four components, which is thus more extensible for
supporting future research in FL for NLP.

In summary, we aim to unblock the research of FL for
NLP with the following two-fold contributions:

¢ Evaluation and analysis. We systematically compare
popular federated learning algorithms for mainstream
NLP task formulations under multiple non-IID data parti-
tions, which thus provides the first comprehensive under-
standing. Our analysis reveals that there is a considerably
large gap between centralized and decentralized training
under various settings. We also analyze the efficiency of
different FL. methods and model sizes. With our analysis,
we highlight several directions to advance FL for NLP.

* Resource. The implementation of our experiments
forms a general open-source framework, FedNLP, which
is capable of evaluating, analyzing, and developing FL
methods for NLP. We also provide decentralized NLP
datasets of various task formulations created by various
non-IID partitioning strategies for future research.

The remainder of this paper is structured as follows. We
introduce the background knowledge of federated learning

and several typical FL algorithms in §2. Then, we present a
few proposed non-IID partitioning strategies to create syn-
thetic datasets for different task formulations in §3. We
present our results, analysis, and findings in §4. Finally, we
discuss more related work (§5) and conclusions (§6).

2 Federated Learning for NLP

In this section, we first introduce the background knowledge
of federated learning (FL) in the context of NLP tasks. Then,
we briefly illustrate a unified FL framework that can be gen-
eralized to other typical algorithms. Finally, we introduce
our framework design that is used for our benchmarking ex-
periments and form a general training pipeline for FL+NLP.

2.1 Federated Learning Concepts

Federated learning (FL) is a machine learning paradigm
where multiple entities (clients) collaborate in solving a ma-
chine learning problem under the coordination of a central
server or service provider. Each client’s raw data is stored
locally and not exchanged or transferred; instead, focused
updates intended for immediate aggregation are used to
achieve the learning objectives (Kairouz et al. 2019). There-
fore, federated learning has been seen as a promising direc-
tion to decrease the risk of attack and leakage, reduce the
difficulty and cost of data movement, and meet the privacy-
related data storage regulations.

In the basic conception of federated learning, we would
like to minimize the objective function,

F(x) = Eivp[Fi(z)], o

where Fj(x) = E¢op,[fi(x, )]
x € R? represents the parameter for the global model, F :
R? — R denotes the local objective function at client 4,
and P denotes a distribution on the collection of clients Z.
The local loss functions f;(x, ) are often the same across
all clients, but the local data distribution D; will often vary,
capturing data heterogeneity.

Federated averaging (FedAvg) (McMahan et al. 2017a)
is a common algorithm to solve (1) by dividing the train-
ing process into rounds. At the beginning of the ¢-th round
(t > 0), the server broadcasts the current global model z®
to a cohort of participants: a random subset of clients from
S® which includes M clients in total. Then, each sam-
pled client in the round’s cohort performs 7; local SGD up-
dates on its own local dataset and sends the local model

changes Az(-t) = :cimi — x® to the server. Finally, the
server uses the aggregated AZ@ to update the global model:
AW
2t = g0 4 ZZGS(& where p; is the relative
ies(t) Pi

weight of client 7. The above procedure will repeat until
the algorithm converges. In the cross-silo setting where all
clients participate in training on every round (each cohort is
the entire population), we have S = {1,2,..., M}. Con-
sequently, we can learn a global model to benefit all clients
while preserving their data privacy.



Algorithm 1: FEDOPT (Reddi et al. 2020)): A
Generic FedAvg Algorithm

Input: Initial model w<0), CLIENTOPT, SERVEROPT
1 fort € {0,1,...,T—1}do
Sample a subset S® of clients
for client i € S in parallel do
Initialize local model "*) = z®
fork=0,...,7 —1do
Compute local stochastic gradient gi(wit’k))

7 Perform local update a;it’k“) =

CLIENTOPT ("%, g: (2", n, 1)
8 Compute local model changes

AWD — (6 _ o (t0)

a v R W W

9 Aggregate local changes

AW =3 s DAY | Sieso pi

10 Update global model

2D = SERVEROPT (2, —A® 1, 1)

2.2 Federated Optimization Framework

In this work, we propose to use FedOPT (Reddi et al. 2020),
a generalized version of FedAvg, to build the FedNLP plat-
form. As the pseudo-code presented in Algorithm 1, the al-
gorithm is parameterized by two gradient-based optimizers:
CLIENTOPT and SERVEROPT with client learning rate 7
and server learning rate 7),, respectively. While CLIENTOPT
is used to update the local models, SERVEROPT treats the
negative of aggregated local changes —A®) as a pseudo-
gradient and applies it to the global model. This optimiza-
tion framework generalizes to many aggregation-based FL.
algorithms and simplifies the system design.

In terms of optimization, we explore different combina-
tions of SEVEROPT and CLIENTOPT. The original FedAvg
algorithm implicitly sets SEVEROPT and CLIENTOPT to be
SGD, with a fixed server learning rate ns of 1.0. FedProx
(Li et al. 2020c), tackling statistical heterogeneity by re-
stricting the local model updates to be closer to the initial
(global) model, can be easily incorporated into this frame-
work by adding L2 regularization for better stability in train-
ing. Moreover, given that AdamW (Loshchilov and Hutter
2019) is widely used in NLP, we set it for C1ientOpt and
let the ServerOpt to be SGD with momentum to reduce
the burden of hyper-parameter tuning.

2.3 FedNLP Training System: Security and
Efficiency

Under the unified definition of federated learning in Algo-
rithm 1, we design a training system to support the research
of NLP in the FL paradigm. We highlight its core capabili-
ties and design as follows.

Supporting diverse FL algorithms. FedNLP aims to en-
able flexible customization for future algorithmic innova-
tions. We have supported a number of classical federated
learning algorithms, including FedAvg (McMahan et al.
2017a), FedOPT (Reddi et al. 2020), and FedProx (Li et al.

2020c). These algorithms follow the same framework intro-
duced in Algorithm 1. The algorithmic APIs are modular-
ized: all data loaders follow the same format of input and
output arguments, which are compatible with different mod-
els and algorithms and are easy to support new datasets; the
method of defining the model and related trainer is kept the
same as in centralized training to reduce the difficulty of
developing the distributed training framework. For new FL
algorithm development, worker-oriented programming re-
duces the difficulty of message passing and definition. More
details are introduced in Appendix C.3.

Enabling secure benchmarking with lightweight secure
aggregation. In particular, FedNLP enhances the security
aspect of federated training, which is not supported by ex-
isting non-NLP-oriented benchmarking libraries (e.g., TFF,
LEAF). This is motivated by the fact that model weights
from clients may still have the risk of privacy leakage (Zhu,
Liu, and Han 2019). To break this barrier, we integrate
secure aggregation (SA) algorithms to the FedNLP sys-
tem. NLP researchers do not need to master security-related
knowledge and also benefit from a secure distributed train-
ing environment. To be more specific, FedNLP supports
state-of-the-art SA algorithms LightSecAgg, SecAgg
(Bonawitz et al. 2017), and SecAgg+ (Bell et al. 2020).
At a high-level understanding, SA protects the client model
by generating a single random mask and allows their can-
cellation when aggregated at the server. Consequently, the
server can only see the aggregated model and not the raw
model from each client. In this work, our main effort is to de-
sign and optimize these SA algorithms in the context of the
FedNLP system. We provide an algorithmic performance
comparison in Appendix C.5.

Realistic evaluation with efficient distributed system de-
sign. FedNLP aims to support distributed training in mul-
tiple edge servers (e.g, AWS EC2) or edge devices (e.g.,
IoTs and smartphones). To achieve this, the system is de-
signed with three layers: the application layer, the algorithm
layer, and the infrastructure layer. At the application layer,
FedNLP provides three modules: data management, model
definition, and a single-process trainer for all task formats;
at the algorithm layer, FedNLP supports various FL algo-
rithms; at the infrastructure layer, FedNLP aims at integrat-
ing single-process trainers with a distributed learning sys-
tem for FL. Specifically, we make each layer and module
perform its own duties and have a high degree of modular-
ization. We refer readers to Appendix C for a detailed de-
scription of the system architecture and design philosophy.

3 Benchmark for FedNLP

Here we introduce how we create benchmark datasets of a
wide range of NLP tasks with different non-IID partition
methods for evaluating different federated learning methods.

3.1 Task Formulations, Datasets, and Models

There are numerous NLP applications, but most of them can
be categorized based on four mainstream formulations: text



Task || Txt.Cls. | Seq.Tag. | QA | Seq2Seq
Dataset || 20News | Onto. | MRQA | Giga.
# Training 11.3k 50k 53.9k 10k

# Test 7.5k Sk 3k 2k

# Labels 20 37* N/A N/A
Metrics || Acc. | F-1 | F-1 | ROUGE

Table 1: Statistics of the selected datasets for our experi-
ments. *37 is the size of the tag vacabulary.

classification (TC), sequence tagging (ST), question answer-
ing (QA), and seq2seq generation (SS). The formal defi-
nition of each formulation is detailed in Appendix §B. To
cover all formulations while keeping our experiments in a
reasonable scope, we select one representative task for each
formulation:

» Text Classification: 20Newsgroup (Lang 1995) is a
news classification dataset with annotations for 20 labels?.

* Sequence Tagging: OntoNotes (Pradhan et al. 2013)
(5.0) is a corpus where sentences have annotations for
the entity spans and types. We use it for the named en-
tity recognition task, which is fundamental to information
extraction and other applications.

* QA: MRQA (Fisch et al. 2019) is a benchmark con-
sisting of 6 popular datasets’: SQuAD (Rajpurkar
et al. 2016) (8529/431), NewsQA (Trischler et al.
2017) (11877/613), TriviaQA (Joshi et al. 2017)
(4120/176) , SearchQA (Dunn et al. 2017) (9972/499)
, HotpotQA (Yang et al. 2018b) , and NQ (Kwiatkowski
et al. 2019) (9617/795).

* Seq2Seq: Gigaword (DBL 2012) is a news corpus with
headlines that is often used for testing seq2seq models as a
summarization task. Other tasks such as dialogue response
generation and machine translation can also be adapted to
this format.

We show the basic statistics of the above selected datasets
in Table 1. Note that our FedNLP as a research platform sup-
ports a much wider range of specific tasks of each formula-
tion, while we only introduce the ones used in our experi-
ments here with typical settings. Moreover, our contribution
is more of a general FL+NLP benchmarking platform in-
stead of particular datasets and partitions.

Base NLP Models. Fine-tuning pre-trained LMs has been
the de facto method for modern NLP research, and thus
we focus on testing Transformer-based architectures in
FedNLP. Specifically, we choose to use BART (Lewis et al.
2020), a text-to-text Transformer model similar to the T5
model (Raffel et al. 2020), for seq2seq tasks.

2We showcase our FedNLP with this dataset as it has a larger
output space (20 labels) than sentiment-analysis datasets, which is
an important factor for the label-distribution shift scenarios.

3We only use part of the data to demonstrate and verify our
hypothesis; we show the train/test split in brackets.
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Figure 2: The J-S divergence matrix between 100 clients on the
20News dataset when a € {1,5,10,100}. Each sub-figure is a
100x100 symmetric matrix. The intensity of a cell (¢, j)’s color
here represents the distance between the label distribution of Client
¢ and j. It is expected that when « is smaller, the partition over
clients is more non-IID in terms of their label distributions.

3.2 Non-IID Partitioning Strategies

The existing datasets have been used for centralized training
in NLP. As our focus here is to test decentralized learning
methods, we need to distribute the existing datasets to a set
of clients. It is the non-IIDness of the client distribution that
makes federated learning a challenging problem. Thus, we
extend the common practice widely used in prior works to
the NLP domain for generating synthetic FL. benchmarks (Li
et al. 2021). We first introduce how we control the label dis-
tribution shift for TC and ST, then the quantity distribution
shift, and finally how we model the distribution shift in terms
of input features for non-classification NLP tasks (e.g., sum-
marization).

Non-IID Label Distributions. Here we present how we
synthesize the data partitions such that clients the share same
(or very similar) number of examples, but have different la-
bel distributions from each other. We assume that on every
client training, examples are drawn independently with la-
bels following a categorical distribution over L classes pa-
rameterized by a vector ¢ (¢; > 0,7 € [1, L] and ||q]]; = 1).
To synthesize a population of non-identical clients, we draw
g ~ Diry, (ap) from a Dirichlet distribution, where p char-
acterizes a prior class distribution over L classes, and o > 0
is a concentration parameter controlling the identicalness
among clients. For each client C;, we draw a q; as its label
distribution and then sample examples without replacement
from the global dataset according to g;. With o — o0, all
clients have identical distributions to the prior (i.e., uniform
distribution); with @ — 0, on the other extreme, each client
holds examples from only one class chosen at random. As
shown in Figure 2, we show a series heatmaps for visualiz-
ing the distribution differences between each client. Figure 3
shows an example of the concrete label distributions for all
clients with different . We can see that when « is smaller,
the overall label distribution shift becomes larger.

Controlling non-IID Quantity. It is also common that
different clients have very different data quantities while
sharing similar label distribution. We thus also provide a
quantity-level Dirichlet allocation z ~ Diry(5) where N
is the number of clients. Then, we can allocate examples in
a global dataset to all clients according to the distribution
z —ie., |D;| = zi|Dg|- If we would like to model both
quantity and label distribution shift, it is also easy to com-

08
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Task Dataset | Partition Clients | FedAvg FedProx FedOPT | # Rounds
Text Classification 20news « =1 (label shift) 100 0.5142 0.5143 0.5349 22
Sequence Tagging  OntoNotes | o =0.1 (label shift) 30 0.7382 0.6731 0.7918 17
Question Answering MRQA natural factor 6 0.2707 0.2706 0.3280 13
Seq2Seq Generation  Gigaword | a =0.1 (feature shift) 100 0.3192 0.3169 0.3037 13

Table 2: The comparisons between different FL. methods under the

per round are 10, expect for the MRQA task, which uses 6.
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Figure 3: Visualizing the non-IID label distributions on 20News
with « being {1, 5,10, 100}. Each sub-figure is a 100x20 matrix,
where 100 is the number of clients, and 20 is the number of labels.
The intensity of a cell here represents the ratio of a particular label
in the local data of a client. When « is smaller (1, 5, 10), each
client has a relatively unique label distribution, thus the differences
between clients are larger; when o = 100, every client has a nearly
uniform label distribution.

bine both factors. Note that one could assume it is a uniform
distribution z ~ U(N), (or 8 — o0) if we expect all clients
to share similar number of examples. A concrete example is
shown in Figure 8 (Appendix).

Controlling non-IID Features. Although straightforward
and effective, the above label-based Dirichlet allocation
method has a major limitation — it is only suitable for
text classification tasks where the outputs can be mod-
eled as category-based random variables. To create syn-
thetic partitions for other non-classification NLP tasks and
model distribution shift, we thus propose a partition method
based on feature clustering. Specifically, we use Sentence-
BERT (Reimers and Gurevych 2019) to encode each exam-
ple to a dense vector by their text then we apply K-Means
clustering to get the cluster label of each example; finally, we
use these cluster labels (as if they were classification tasks)
to follow the steps in modeling label distribution shift. There
are two obvious benefits of this clustering-based Dirichlet
partition method: 1) It enables us to easily synthesise the
FL datasets for non-classification tasks (i.e., ST, QA, SS)
as they do not have discrete labels as output space; 2) The
BERT-based clustering results naturally imply different sub-
topics of a dataset, and thus feature shift can be seen as shift
of latent-labels — we can reuse the same method for label-
based Dirichlet partition method.

same setting on different NLP tasks. The number of workers

Natural Factors For datasets like MRQA, we consider a
cross-silo setting where each client is associated with a par-
ticular sub-dataset (out of the six datasets of the same for-
mat), forming a natural distribution shift based on the inher-
ent factors such as data source and annotating style.

4 Experiments and Analysis

In this section, we aim to analyze typical federated learn-
ing methods (introduced in on our benchmark datasets with
multiple dimensions with the base NLP models listed pre-
viously. We put more implementation details and additional
results in Appendix. We organize our extensive experimen-
tal results and findings from the analysis as a collection of
research questions with answers.

Experimental Setup and Hyper-parameters. We use
DistilBERT and BART-base for most of our experiments,
as the former is a distilled version of BERT model and has
a 7x speed improvement over BERT-base on mobile devices
— a common scenario for FL applications; the BART-base
model is the most suitable option considering the trade-off
between performance and computation cost. We leave our
implementation details and the selected hyper-parameters in
the submitted supplementary materials.

Our experiments cover both cross-device and cross-silo
settings. As shown in Table 2, in the cross-device setting,
we use uniform sampling to select 10 clients for each round
when the client number in a dataset is very large (e.g., 100).
For the cross-silo setting, each round will select the same
number of clients (we use 6 for the QA task). The local
epoch number is set to 1 for all experiments. To make our
results reproducible, we use wandb.ai to store all experiment
logs and hyper-parameters as well as running scripts.

Q1: How do popular FL methods perform differ-
ently under the same setting?

We compare the three typical FL methods under the same
setting (i.e., data partition, communication rounds, training
hyper-parameters, etc.) for each task formulation. As shown
in Table 2, we report the results of FedAvg, FedProx, and
FedOPT. We can see that overall FedOPT performs better
than the other two methods, with the only exception being
in the seq2seq generation task. FedAvg and FedProx per-
forms similarly with marginal differences, but FedAvg out-
performs FedProx in sequence tagging. These two excep-
tions are surprising findings, as many prior works in the FL.
community show that FedOPT is generally better than Fed-
Prox than FedAvg on vision tasks and datasets.
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Figure 4: The learning curves of the three FL. Methods on four different task formulations. The metrics used for these tasks are
accuracy, span-F1, token-F1, and ROUGE respectively; The x-axis is the number of rounds in federated learning.
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Figure 5: Testing FedOPT with Dist 1 1BERT for 20News
under different data partition strategies.

We conjecture that such inconsistent performance across
tasks suggests the difference in terms of the loss functions
have a great impact on FL performance. Seq2seq and se-
quence tagging tasks usually have more complex loss land-
scapes than text classification, as they are both typical struc-
tured prediction tasks, while the text classification has a
much smaller output space. From Fig. 4, we see that the
FedOPT outperforms the other two methods at the begin-
ning while gradually become worse over time. This tells us
that the use of AdamW as the client optimizer may not al-
ways be a good choice, especially for a complex task such
as the Seq2Seq ones, as its adaptive method for scheduling
learning rates might cause implicit conflicts. These observa-
tions suggest that federated optimization algorithms need to
be tailored for various NLP tasks, and exploring FL-friendly
model architecture or loss function can also be promising
directions to address these challenges.

02: How do different non-IID partitions of the same
data influence FL performance?

The FedNLP platform supports users to investigate the
performance of a FL algorithm with a wide range of data
partitioning strategies, as discussed in §3.2. Here we look at
the training curves of the FedOPT on different partitions, as
shown in Figure 5. We reveal several findings:

* When « is smaller (i.e., the partition is more non-IID in
terms of their label distribution), the performance tends to

degrade, based on the three curves (o = {1, 5, 10}).

Frozen Layers | # Tunable Paras.

Cent. FedOpt.

None 67.0M 86.86  55.11
E 43.1M 86.19  54.86
E+ Ly 36.0M 86.54 5291
E+ Loy 29.0M 86.52  53.92
E+ Loys 21.9M 8571  52.01
E+ Lo_s 14.8M 8547  30.68
E+ Lo 7IM 8276  16.63
E+ Loss 0.6M 63.83 1297

Table 3: Performance (Acc.%) on 20news (TC) when differ-
ent parts of Dist 11BERT are frozen for centralized train-
ing and FedOpt (at 28-th round). F stands for the embedding
layer and L; means the ¢-th layer. The significant lower ac-
curacy are underlined.

* The variance is also larger when the label distribution shift
is larger. Both uniform and quantity-skew partitions have
a smoother curve, while the variance is smaller for a larger
a (e.g., 10).

* Quantity skew does not introduce a great challenge for
federated learning when the label distribution is closer to
the uniform one.

These findings suggest that it is important to to design
algorithms to mitigate the data heterogeneity. One promising
direction is personalized FL, which enables each client to
learn its own personalized model via adapting its local data
distribution and system resources (Dinh, Tran, and Nguyen
2020; Fallah, Mokhtari, and Ozdaglar 2020; Li et al. 2020a).

Q3: How does freezing of Transformers influence
the FL performance?

Communication cost is a major concern in the federated
learning process. It is thus natural to consider freezing some
Transformer layers of the client models in order to reduce
the size of the trainable parameters that will be transmitted
between servers and clients. To study the influence of freez-
ing layers on the FL performance, we conduct a series of
experiments that freeze the layers from the embedding layer
(E) to the top layer (L5) of DistilBERT with both central-
ized training and FedOPT on the text classification task.

We report our results in Table 3 and Figure 6. We find that
in centralized training, the largest performance gain happens
when we unfreeze the last layer, while in FedOPT we have to
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Figure 6: Testing FedOPT with Dist i 1BERT for 20News
under different frozen layers.

unfreeze the last three layers to enjoy a comparable perfor-
mance with the full model. This suggests that reducing com-
munication costs via freezing some layers of Transformer
LMs is feasible, though one should be aware that the expe-
rience in centralized training may not generalize to the FL.
experiments.

Q4: Are compact model DistilBERT adequate for
FL+NLP?

We know that BERT has a better performance than Distil-
BERT for its larger model size. However, is it cost-effective
to use BERT rather than DistilBERT? To study this, we
compare the performance of both models with FedOPT on
text classification, sharing the same setting as above experi-
ments. As shown in Figure 7, although BERT-base achieves
a better performance, the performance of DistilBERT is not
significantly worse. Considering the communication cost
(BERT-base is almost 2x larger than DistilBERT), we ar-
gue that using DistilBERT is a more cost-effective choice
for both experimental analysis and realistic applications.

5 Related Work

FL benchmarks and platforms. In the last few years a
proliferation of frameworks and benchmark datasets have
been developed to enable researchers to better explore and
study algorithms and modeling for federated learning, both
from academia: LEAF(Caldas et al. 2018), FedML (He et al.
2020a), Flower (Beutel et al. 2020), and from the industry:
PySyft (Ryffel et al. 2018), TensorFlow-Federated (TFF)
(Ingerman and Ostrowski 2019), FATE (Yang et al. 2019),
Clara (NVIDIA 2019), PaddleFL (Ma et al. 2019), Open FL
(Intel® 2021). However, most platforms only focus on de-
signing a unified framework for federated learning methods
and do not provide a dedicated environment for studying
NLP problems with FL. methods. LEAF (Caldas et al. 2018)
contains a few text datasets, however, it is limited to classi-
fication and next word prediction datasets and does not con-
sider the pre-trained language models. We want to provide a
dedicated platform for studying FL methods in realistic NLP
applications with state-of-the-art language models.
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Figure 7: FedOPT for 20News with different LMs.

Federated learning in NLP applications. There are a few
prior works that have begun to apply FL methods in privacy-
oriented NLP applications. For example, federated learn-
ing has been applied to many keyboard-related applications
(Hard et al. 2018; Stremmel and Singh 2020; Leroy et al.
2019; Ramaswamy et al. 2019; Yang et al. 2018a), sentence-
level text intent classification using Text-CNN (Zhu et al.
2020), and pretraining and fine tuning of BERT using med-
ical data from multiple silos without fetching all data to the
same place (Liu and Miller 2020). FL methods also have
been proposed to train high quality language models that can
outperform the the models trained without federated learn-
ing (Ji et al. 2019; Chen et al. 2019). Besides these applica-
tions, some work has been done in medical relation extrac-
tions (Ge et al. 2020) and medical name entity recognition
(Sui et al. 2020). These methods use federated learning to
preserve the privacy of sensitive medical data and learn data
in different platform, excluding the need for exchanging data
between different platforms.

Our work aims to provide a unified platform for studying
various NLP applications in a shared environment so that
researchers can better design new FL methods either for a
specific NLP task or as a general-purpose model. The afore-
mentioned prior works would thus be a particular instance
of the settings supported by the FedNLP platform.

6 Conclusion

We present FedNLP, an open-source benchmarking frame-
work aiming to develop, evaluate, and analyze FL meth-
ods for NLP tasks. On top of FedNLP, we conduct exten-
sive experiments covering three typical FL. methods and four
mainstream NLP task formulations under different non-IID
partition methods. Our findings suggest that there is still a
huge gap between centralized training and federated learn-
ing. From our analysis, there are a few observations that con-
flict with the conventional FL evaluation on non-NLP tasks
because of the inherent complexity of structured prediction
problems in NLP (e.g., seq2seq) — suggesting future direc-
tions on syncing learning rates for fine-tuning Transformer-
based NLP models. We also empirically show the effect of
fine-tuning different numbers of parameters of pre-trained
models for reducing the cost of data transfer via freezing
bottom layers. Finally, we have also suggested several fu-
ture directions in the FL+NLP research.



7 Future Directions

Minimizing the performance gap. In the FL setting, we
demonstrate that federated fine-tuning still has a large ac-
curacy gap in the non-IID dataset compared to centralized
fine-tuning. Developing algorithms for Transformer models
with NLP tasks is of the highest priority.

Improving the system efficiency and scalability. Trans-
former models are usually large, while resource-constrained
edge devices may not be able to run large models. Design-
ing efficient FL. methods for NLP tasks is thus a practical
problem worth solving. How to adopt a reasonable user se-
lection mechanism to avoid stragglers and speed up the con-
vergence of training algorithms is also a pressing problem to
be solved.

Trustworthy and privacy-preserving NLP. We argue
that it is an important future research direction to analyze
and assure the privacy-preserving ability of these methods,
although our focus in this paper is the implementation and
performance analysis of the FL. methods for NLP tasks. It is
now an open problem for both FL and NLP areas, while it
is an orthogonal goal for improving the trustworthy of de-
centralized learning, and it is only possible to study privacy
preservation when we have an existing FL+NLP platform.
This is also part of our motivation in proposing FedNLP,
and we believe our framework provides a set of flexible in-
terfaces for future development to analyze and improve the
privacy-preserving ability of FL methods for NLP tasks and
beyond.

Personalized FedNLP. From the perspective of the data
itself, user-generated text is inherently personalized. Design-
ing personalized algorithms to improve model accuracy or
fairness is a very promising direction. In addition, it is also
an interesting problem to adapt the heterogeneous model ar-
chitecture for each client in the FL network. We show that it
is feasible to only fine-tune a small amount of the parame-
ters of LMs, so it is promising to adapt recent prefix-tuning
methods (Li and Liang 2021) for personalizing the parame-
ters of NLP models within the FedNLP framework.
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Appendix for the FedNLP submission

A Motivation Behind FL+NLP

Many realistic NLP services heavily rely on users’ local data
(e.g., text messages, documents and their tags, questions and
selected answers, etc.), which can be located at either per-
sonal devices or larger data-silos for organizations. These
local data are usually regarded as highly private and thus
not directly accessible by anyone, according to many data
privacy regulations; this makes it difficult to train a high-
performance model to benefit users. Federated learning aims
to solve machine learning under such a privacy-preserving
use case, thus offering a novel and promising direction to
the community: FL+NLP.

Apart from the goal of learning a shared global model
for all clients, FL also provides a new perspective for many
other interesting research questions in NLP. One related di-
rection is to develop personalized models for NLP applica-
tions, which requires both protection of data privacy and
transferred ability on users’ own input feature distribution
caused by language styles, interested topics and so on. The
recent concerns on adversarial attacks and safety issues of
NLP models are also highly related to FL+NLP. We thus
believe FL+NLP is of vital importance for applying NLP
technologies in realistic use cases and could benefit many
relevant research areas.

A.1 Challenges of Applying FL in NLP

Given the promising benefits of studying FL+NLP, how-
ever, this research direction is currently blocked by the lack
of a standardized platform providing fundamental building
blocks: benchmark datasets, NLP models, FL methods, eval-
uation protocols, etc. Most of the current FL platforms either
focus on unifying various FL. methods and use computer vi-
sion models and datasets for their experiments, but lack the
ability to connect the study of pre-trained language models,
the most popular NLP , and realistic NLP applications of
various task formulations.

The first challenge in developing a comprehensive and
universal platform for FL+NLP is to deal with various task
formulations for realistic NLP applications, which have dif-
ferent input and output formats (Section B). As the non-1ID
data partition over clients is the major feature of FL prob-
lems, it is also a challenge to simulate the realistic non-1ID
partition for existing NLP datasets (Section 3.2). Finally, a
platform also must integrate various FL. methods with the
Transformer-based NLP models for a variety of task types,
and thus a flexible and extensible learning framework is
needed. In particular, the conventional trainer component of
Transformers now needs to be modified for efficient and safe
communications towards federated learning (Section C).

B Basic Formulations of NLP Tasks

There are various types of NLP applications, but many of
them share a similar task formulation (i.e., input-and-put
formats). We show four common task formulations that can

cover most of the mainstream NLP applications: text clas-
sification, sequence tagging, question answering, sequence-
to-sequence generation.

Text Classification (TC) The input is a sequence of words,
x = [wi,ws,...], and the output is a label y in a fixed set
of labels £. Many NLP applications can be formulated as
text classification tasks. For example, we can use TC mod-
els for classifying the topic of a news article to be political,
sports, entertainment, etc., or analyzing movie reviews to be
positive, negative or neutral.

Sequence Tagging (ST) The input is a sequence of words,
x = [wy,ws,...,wy], and the output is a same-length se-
quence of tags y = [t1,%a,...,tN], where ¢; is in a fixed
set of labels £. The main difference between TC and ST
is that ST learns to classify the label of each token in a
sentence, which is particularly useful in analyzing syntac-
tic structures (e.g., part-of-speech analysis, phrase chunking,
and word segmentation) and extracting spans (e.g., named
entity recognition).

Question Answering (QA) Given a passage P =
[wy,wa,...,wy] and a question ¢ as input, the task is to
locate a span in the passage as the answer to the ques-
tion. Thus, the output is a pair of token index (s, e) where
s,e € {1,2,...,N} for denoting the begin and end of
the span in the passage. This particular formulation is also
known as reading comprehension.

Natural Language Generation (NLG) Both input and out-
put are sequence of words, z = [wi,wh,... wy],y =
[wg, w3, ..., w$,]. Itis shared by many realistic applications
such as summarization, response generation in dialogue sys-
tems, machine translation, etc.

Language Modeling (LM) The left-to-right language mod-
eling task considers a sequence of words as the input z =
[wi,wa, ..., w,] and a token y = w,, 11 as the output. The
output token is expected to be the most plausible next word
of the incomplete sentence denoted as x. Although the direct
application of LM is limited, a high-performance pre-trained
language model can benefit a wide range of NLP applica-
tions (as above) via fine-tuning. It also serves as an excellent
test bed as it requires no human annotations at all.

Others. There are some other applications that not are cov-
ered by the above four basic formulations, and our extensible
platform (detailed in Section C) enables users to easily im-
plement their specific tasks. For each task formulation, we
show which datasets are used in FedNLP and how we parti-
tion them in Section 3.

C The System Design of FedNLP

The FedNLP platform consists of three layers: the ap-
plication layer, the algorithm layer, and the infrastructure
layer. At the application layer, FedNLP provides three mod-
ules: data management, model definition, and single-process
trainer for all task formats; At the algorithm layer, FedNLP
supports various FL algorithms; At the infrastructure layer,
FedNLP aims at integrating single-process trainers with a
distributed learning system for FL. Specifically, we make
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Figure 8: The probability density of quantity of training ex-
amples in each of the 100 clients on the 20News dataset with
different 5. When [ is larger, then all clients share more sim-
ilar numbers of examples; when f is smaller, then the range
of the quantity is much wider — i.e., the larger differences
between clients in terms of their sizes of datasets.

each layer and module perform its own duties and have a
high degree of modularization.

C.1 Overall Workflow

The module calling logic flow of the whole framework is
shown on the left of Figure 9. When we start the federated
training, we first complete the launcher script, device alloca-
tion, data loading, model creation, and finally call the API of
the federated learning algorithm. This process is expressed
in Python-style code (see Alg. 2).

C.2 The Application Layer

Data Management. In data management, What
DataManager does is to control the whole workflow
from loading data to returning trainable features. To be
specific, DataManager is set up for reading hSpy data
files and driving a preprocessor to convert raw data to
features. There are four types of DataManager according
to the task definition. Users can customize their own
DataManager by inheriting one of the DataManager
class, specifying data operation functions, and embedding a
particular preprocessor. Note that the raw data’s H5Py file
and the non-IID partition file are preprocessed offline, while
DataManager only loads them in runtime.

Model Definition. We support two types of models:
Transformer and LSTM. For Transformer models, in or-
der to dock with the existing NLP ecology, our frame-
work is compatible with the HuggingFace Transformers li-
brary (Wolf et al. 2020), so that various types of Trans-
formers can be directly reused without the need for re-
implementation. Specifically, our code is compatible with

Algorithm 2: The FedNLP Workflow

# using text classification (TC) as an example

# initialize distributed computing environment
process_id, ... = FedNLP_init ()

# GPU device management
device = map_process_to_gpu(process_id, ...)

# data TVW&IT\E\L]QTVWQTWt
data_manager = TCDataManager (process_id, ...)
# load the data dictionary by process_id

data_dict = dm.load_federated_data (process_id)

# create model by specifying the task
client_model, . = create_model (model_args,
formulation="classification")

# define a customized NLP Trainer
client_trainer = TCTrainer (device,
client_model, ...)

# launch the federated training (e.g., FedAvg)
FedAvg_distributed(..., device,

client_model,

data_dict, ...,

client_trainer)

the three main classes of Tokenizer, Model, and Config
in HuggingFace. Users can also customize them based on
HuggingFace’s code. Although LSTM has gradually devi-
ated from the mainstream, we still support LSTM to reflect
the framework’s integrity, which may meet some particular
use cases in federated setting.

NLP Trainer (single process perspective). As for the
task-specific NLP Trainer, the most prominent feature
is that it does not require users to have any background
in distributed computing. Users of FedNLP only need to
complete single-process code writing. A user should in-
herit the Trainer class in the application layer to im-
plement the four methods as shown in the figure: 1. the
get_model_params () interface allows the algorithm layer
to obtain model parameters and transmit them to the server;
2. the set_model_params () interface obtains the updated
model from the server’s aggregation and then updates the
model parameters of the local model; 3. the programming of
the train() and test () function only needs to consider
the data of a single user, meaning that the trainer is com-
pletely consistent with the centralized training.

C.3 The Algorithm Layer

In the design of the algorithm layer, we follow the principle
of one-line API. The parameters of the API include model,
data, and single-process trainer (as shown in Algorithm 2).
The algorithms we support include:

Centralized Training. We concatenate all client datasets
and use the global data D¢ to train a global model — i.e.,
the conventional protocol for learning a NLP model on a
dataset.

FedAvg (McMahan et al.2017a) is the de facto method for
federated learning, assuming both client and server use the
SGD optimizer for updating model weights.
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Figure 9: The overall workflow and system design of the proposed FedNLP platform.

FedProx (Lietal. 2020c) can tackle statistical heterogene-
ity by restricting the local model updates to be closer to the
initial (global) model with L2 regularization for better sta-
bility in training.

FedOPT (Reddi et al. 2020) is a generalized version of
FedAvg. There are two gradient-based optimizers in the
algorithm: ClientOpt and ServerOpt (please refer to
the pseudo code in the original paper (Reddi et al. 2020)).
While ClientOpt is used to update the local models,
SerevrOpt treats the negative of aggregated local changes
—A® as a pseudo-gradient and applies it on the global
model. In our FedNLP framework, by default, we set the
ClientOpt to be AdamW (Loshchilov and Hutter 2019)
and the SerevrOpt to be SGD with momentum (0.9) and
fix server learning rate as 1.0.

Each  algorithm includes two core  objects,
ServerManager and ClientManager, which inte-
grate the communication module ComManager from the
infrastructure layer and the Trainer of the training engine
to complete the distributed algorithm protocol and edge
training. Note that users can customize the Trainer by
passing a customized Trainer through the algorithm API.

C.4 The Infrastructure Layer
The infrastructure layer includes three modules:

1) Users can write distributed scripts to manage GPU re-
source allocation. In particular, FedNLP provides the GPU
assignment API (map_process_to_gpu () in Algorithm
2) to assign specific GPUs to different FL. Clients.

2) The algorithm layer can use a unified and abstract
ComManager to complete a complex algorithmic com-
munication protocol. Currently, we support MPI (Mes-
sage Passing Interface), RPC (Remote procedure call), and
MQTT (Message Queuing Telemetry Transport) communi-
cation backend. MPI meets the distributed training needs
in a single cluster; RPC meets the communication needs
of cross-data centers (e.g., cross-silo federated learning);
MQTT can meet the communication needs of smartphones
or IoT devices.

3) The third part is the training engine, which reuses the ex-
isting deep learning training engines by presenting as the
Trainer class. Our current version of this module is built
on PyTorch, but it can easily support frameworks such as
TensorFlow. In the future, we may consider supporting the
lightweight edge training engine optimized by the compiler



technology at this level.

C.5 Enhancing Security with Secure Aggregation
(SA)

FedNLP supports state-of-the-art SA  algorithms
LightSecAgg, SecAgg (Bonawitz et al. 2017), and
SecAgg+ (Bell et al. 2020). Here, we provide a short
performance comparison of these three algorithms. In
general, Light SecAgg provides the same model privacy
guarantees as SecAgg (Bonawitz et al. 2017) and SecAgg+
(Bell et al. 2020)) while substantially reducing the aggre-
gation (hence run-time) complexity (Figure 10). The main
idea of Light SecAgqg is that each user protects its local
model using a locally generated random mask. This mask is
then encoded and shared to other users, in such a way that
the aggregate mask of any sufficiently large set of surviving
users can be directly reconstructed at the server. Our main
effort in FedNLP is integrating these algorithms, optimizing
its system performance, and designing user-friendly APIs
to make it compatible with NLP models and FL algorithms.
The performance analysis is shown in Figure 10. Figure
10(a) shows the performance when the model training
does not run in parallel with encoding/decoding operations,
while Figure 10(b) shows the performance when the model
training overlaps with encoding/decoding operations.

D Implementation Details

Non-IID. Label Distribution Note that this might cause a
few clients not to have enough examples to sample for par-
ticular labels if they are already used up. Prior works choose
to stop assigning early and remove such clients, but it conse-
quently loses the other unused examples and also causes the
inconsistency of client numbers. Thus, to avoid these issues,
we propose a dynamic reassigning method which comple-
ment the vacancy of a label by filling in the examples of
other labels based on their current ratio of remaining unas-
signed examples.

E More Related Works

Federated Learning Methods. Federated Learning (FL)
is a widely disciplinary research area that mainly focuses on
three aspects: statistical challenge, trustworthiness, and sys-
tem optimization. Numerous methods have been proposed
to solve statistical challenges, including FedAvg (McMahan
et al. 2017b), FedProx (Li et al. 2020c), FedOPT (Reddi
et al. 2020), FedNAS (He, Annavaram, and Avestimehr
2020a; He et al. 2020b), and FedMA (Wang et al. 2020b)
that alleviate the non-IID issue with distributed optimiza-
tion, and new formulations, MOCHA (Smith et al. 2017),
pFedMe (Dinh, Tran, and Nguyen 2020), perFedAvg (Fal-
lah, Mokhtari, and Ozdaglar 2020), and Ditto (Li et al.
2020a), that consider personalization and fairness in feder-
ated training.

For trustworthiness, security and privacy are the two main
research directions that are mainly concerned with resisting
data or model attacks, reconstruction, and leakage during
training (So, Giiler, and Avestimehr 2021b,a, 2020; Prakash
et al. 2020; Prakash and Avestimehr 2020; Elkordy and
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Figure 10: LightSecAgg: Total running time of
LightSecAgg versus the state-of-the-art protocols
(SecAgg (Bonawitz et al. 2017) and SecAgg+ (Bell et al.
2020)), as the number of users increases, for various dropout
rates.

Avestimehr 2020; Prakash et al. 2020; Wang et al. 2020a;
Lyu et al. 2020). Given that modern deep neural networks
are over-parameterized and dominate nearly all learning
tasks, researchers also proposed algorithms or systems to
improve the efficiency and scalability of edge training (He,
Annavaram, and Avestimehr 2020b; He et al. 2020a, 2019,
2021). We refer readers to the canonical survey (Kairouz
et al. 2019) for details.

Although tremendous progress has been made in the past
few years, these algorithms or systems have not been fully
evaluated on realistic NLP tasks introduced in this paper.



